Nghiệm của phương trình cosx = -1/căn2 là

Câu 373937: Tập nghiệm của phương trình \(\cos x = \dfrac{{\sqrt 2 }}{2}\) là:

A. \(\left\{ {\dfrac{{3\pi }}{4} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)  

B. \(\left\{ { - \dfrac{\pi }{4} + k2\pi ,\,\,\dfrac{{5\pi }}{4} + k2\pi \,\,k \in \mathbb{Z}} \right\}\)

C. \(\left\{ { \pm \dfrac{{3\pi }}{4} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)  

D. \(\left\{ { \pm \dfrac{\pi }{4} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)

Giải phương trình lượng giác cơ bản \(\cos x = \cos \alpha  \Leftrightarrow x =  \pm \alpha  + 2k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Trang chủ Đề thi & kiểm tra Lớp 11 Toán học Trắc nghiệm Ôn tập Đại số và Giải tích 11 có đáp án !!

Nghiệm của phương trình

Câu hỏi: Nghiệm của phương trìnhcosx=cosα là:

A.x=α+k2π

B. x=±α+k2π

C. x=±α+kπ

D. x=α+k2πhoặcx=π-α+k2πk∈ℤ

Đáp án

B

- Hướng dẫn giải

Chọn B

Câu hỏi trên thuộc đề trắc nghiệm

Trắc nghiệm Ôn tập Đại số và Giải tích 11 có đáp án !!

Lớp 11 Toán học Lớp 11 - Toán học

trong: Toán học, Toán học lớp 11, Đại số

Xem mã nguồn

  • m
    [-1;1] => phương trình vô nghiệm
  • m ∈ [-1;1] thì:
  • sinx=sinα (α = SHIFT sin)
x = α + k2.π hoặc x = pi - α + k2.π (α: rad, k∈Z) x = a + k.360° hoặc x = 180° - a + k.360° (a: độ°, k∈Z)
  • Nếu m không là "giá trị đặc biệt" thì:
  • x = arcsinm + k2.pi (arc = SHIFT sin)
  • x = pi - arcsinm + k2.pi
  • sinx = 1 <=> x=
  • sinx = -1 <=> x=
  • sinx = 0 <=> x=k.pi
  • m [-1;1] => phương trình vô nghiệm
  • m ∈ [-1;1] thì:
  • cosx=cosα (α = SHIFT sin)
x = ±α + k2.pi (α: rad, k∈Z) x = ±a + k.360° (a: độ°, k∈Z)
  • Nếu m không là "giá trị đặc biệt" thì:
  • x = ±arccosm + k2.pi (arc = SHIFT cos)
  • cosx = 1 <=> x=
  • cosx = -1 <=> x=
  • cosx = 0 <=> x=
  • tanx=tanα (α = SHIFT tan)

<=> x = α + k.pi (α: rad, k∈Z)

<=> x = a + k.360° (α: độ°, k∈Z)

  • Nếu m "không là giá trị đặc biệt thì

cotx=m

  • cotx=cotα (α = SHIFT tan(1/m))

<=> x = α + k.pi (α: rad, k∈Z)

<=> x = a + k.360° (α: độ°, k∈Z)

  • Nếu m "không là giá trị đặc biệt thì


Xem lại các giá trị lượng giác của các góc, cung đặc biệt:

Một số dạng toán

Biến đổi

  • sinf(x) = -sing(x) = sin(-g(x))
  • sinf(x) = cosg(x) → sinf(x) = sin(pi/2 - g(x))
  • sinf(x) = -cosg(x) → cosg(x) = -sinf(x) = sin(-f(x)) → cosg(x) = cos(pi/2 - f(x))
  • Khi có
    , ta thường "hạ bậc tăng cung".

Tìm nghiệm và số nghiệm

1) Giải phương trình A với x ∈ a.

  • Trước hết tìm họ nghiệm của phương trình a.
  • Xét x trong a. Lưu ý k ∈ Z. Khi tìm được k, quay lại họ nghiệm để tìm ra nghiệm x.

2) Tìm số nghiệm k

  • Các bước tương tự như trên.
  • Tìm được k → số nghiệm.

Tìm giâ trị lớn nhất và nhỏ nhất

Tìm nghiệm âm lớn nhất và nghiệm dương nhỏ nhất

1) Với nghiệm âm lớn nhất

  • Xét x < 0 (k ∈ Z)
  • Thay vào họ nghiệm để tìm nghiệm.

2) Với nghiệm dương nhỏ nhất

  • Xét x > 0 (k ∈ Z)
  • Thay vào họ nghiệm để tìm nghiệm.

Tìm tập giá trị

Tìm tập giá trị của phương trình A.

  • Biến đổi phương trình về dạng phương trình bậc hai.
  • Đặt phương trình lượng giác (sin, cos...) = t (nếu có điều kiện)
  • Tìm đỉnh I (-b/2a; -Δ/4a)
  • Vẽ bảng xét giả trị (hình minh họa): (pt âm → mũi trên đi ↑ rồi ↓ và ngược lại)

  • Tìm miền giá trị tại hai điểm thuộc t (thay 2 giá trị đó vào t) rồi rút ra kết luận.
  • Chú ý: Asinx + Bcosx = C
Điều kiện

Video liên quan

Chủ đề