Công thức trọng tâm tam giác lớp 10

Tính chất của trọng tâm và cách xác định trọng tâm trong Hình học

Như các bạn đã biết giao điểm của ba đường trung tuyến trong một tam giác chính là trọng tâm của tam giác đó, vậy chúng là điểm như thế nào và có những tính chất đặc biệt gì. Hãy cùng chúng tôi tìm hiểu nhé!

I. Lý thuyết về trọng tâm

    1. Trọng tâm là gì?

Trọng tâm trong tam giác là giao điểm của ba đường trung tuyến xuất phát từ ba đỉnh.

Cho tam giác ABC, trong đó AM, BN, CP lần lượt là trung tuyến của tam giác xuất phát từ đỉnh A, B, C. AM, BN, CP cắt nhau tại G nên G chính là trọng tâm của tam giác

Công thức liên quan:

  •  Hình đa giác đều n cạnh
  •  Hình lục giác

    2. Tính chất trọng tâm của tam giác

Để xác định trọng tâm của một tam giác ta thực hiện:

Cách 1:

  • Tìm trung điểm M của BC sao cho MC = MB
  • Nối A với M ta được đường trung tuyến AM.
  • Tương tự với các đường trung tuyến còn lại.
  • Giao 3 đường trung tuyến là điểm G. Suy ra G chính là trọng tâm tam giác ABC.

Cách 2:

  • Tìm trung điểm M của BC sao cho MC = MB
  • Nối A với M ta được đường trung tuyến AM.
  • Trên đoạn thẳng AM lấy điểm G sao cho: \(AG=\dfrac{2}{3} AM\)
  • Vậy theo tính chất trọng tâm ta có G chính là trọng tâm tam giác ABC.

Cho tam giác ABC có AM, BN, CP lần lượt là ba đường trung tuyến tại đỉnh A, B, C. Ta có giao của ba đường trung tuyến là điểm G. Vậy G là trọng tâm của tam giác ABC.

Ta có tính chất:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM} \Rightarrow AG=\dfrac{2}{3} AM\)

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

II. Trọng tâm của các hình học đặc biệt

Tam giác ABC vuông tại B, từ B vẽ đường trung tuyến BA, vì BA là đường trung tuyến của góc vuông nên: BA = 1/2 CD=AD = AC.

Vậy tam giác ADB và tam giaisc ABC lần lượt cân tại A,

Cho tam giác ABc cân tại A, G là trọng tâm tam giác ABC. Vì tam giác cân tại A, nên AG vừa là đường trung tuyến, vừa là đường cao và là đường phân giác cùa tam giác ABC.

Hệ quả:

\(\widehat{BAG}=\widehat {CAG}\)

- AG vuông góc với BC.

  • Trọng tâm tam giác đều là gì

Cho tam giác ABC đều, G là giao điểm ba đường trung tuyến. Theo tính chất của tam giác đều ta có G vừa là trọng tâm, trựa tâm, tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC.

Ta có G là trọng tâm tứ diện ABCD.

Trọng tâm tứ diện là giao điểm của bốn đường thẳng nối đỉnh và trọng tâm của tam giác đối diện.

III. Luyện tập

Bài tập: Cho tam giác ABC, trung tuyến BM = CN. BM cắt CN tại G. CHứng minh tam giác ABC cân tại A

Lời giải:

Vì BM và CN là hai đường TT của tam giác mà BM giao CN tại G, nên ta có:

\(\dfrac{BG}{BM}=\dfrac{CG}{CN}=\dfrac{2}{3}\)

Mà BM = CN nên BG = CN và GN = GM

Xét \(\Delta BNG \ và \ \Delta CGM\) ta có:

BG = CN

GN = GM

\(\widehat{BGN}= \widehat{CGM}\) ( 2 goc đối đỉnh)

Suy ra : \(\Delta BNG \ đồng \ dạng \ \Delta CMG\)

Suy ra: BN = CM (1)

mà M và N lần lượt là trung điểm của AB và AC (2)

Từ (1) và (2) ta cí AB = AC => Tam giác ABC cân tại A( đpcm).

Tham khảo bộ công thức cực chất >>>>Toàn bộ công thức siêu nhanh Toán 12 đầy đủ nhất từ A - Z ôn thi THPTQG

Vậy là chúng ta đã tìm hiểu xong về khái niệm trọng tâm. Nếu có thắc mắc và ý kiến thú vị xin vui lòng để lại dưới mục bình luận nhé, chúng tôi rất mong nhận được sự đóng góp từ các bạn!

Nhắc lại hệ thức lượng trong tam giác vuông.

Cho tam giác \(ABC\) vuông góc tại đỉnh \(A\) (\(\widehat{A} = 90^0\)), ta có:

1. \({b^2} = ab';{c^2} = a.c'\)

2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)

3. \(a.h = b.c\)

4. \(h^2= b’.c’\)

5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)

 

1. Định lý cosin

Định lí: Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với \(cosin\) của góc xen giữa chúng.

Ta có các hệ thức sau:  

$$\eqalign{ & {a^2} = {b^2} + {c^2} - 2bc.\cos A \, \, (1) \cr & {b^2} = {a^2} + {c^2} - 2ac.\cos B \, \, (2) \cr

& {c^2} = {a^2} + {b^2} - 2ab.\cos C \, \, (3) \cr} $$

Hệ quả của định lí cosin:

\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)

\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Áp dụng: Tính độ dài đường trung tuyến của tam giác:

Cho tam giác \(ABC\) có các cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh \(A, B, C\) của tam giác. Ta có

\({m_{a}}^{2}\) =  \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)

\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)

\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)

2. Định lí sin

Định lí: Trong tam giác \(ABC\) bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)

với \(R\) là bán kính đường tròn ngoại tiếp tam giác 

Công thức tính diện tích tam giác

Diện tích \(S\) của tam giác \(ABC\) được tính theo một trong các công thức sau

\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)   

\(S = \dfrac{abc}{4R}\, \,(2)\)           

\(S = pr\, \,(3)\)              

\(S = \sqrt{p(p - a)(p - b)(p - c)}\)  (công thức  Hê - rông) \((4)\)

Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là bán kính đường tròn ngoại tiếp, bk đường tròn nội tiếp và \(S\) là diện tích tam giác đó.

3. Giải tam giác và ứng dụng vào việc đo đạc

Giải tam giác : Giải tam giác là đi tìm các yếu tố (góc, cạnh) chưa biết của tam giác khi đã biết một số yếu tố của tam giác đó.

Muốn giải tam giác ta cần tìm mối liên hệ giữa các góc, cạnh đã cho với các góc, các cạnh chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.

Các bài toán về giải tam giác: Có 3 bài toán cơ bản về gỉải tam giác:

a) Giải tam giác khi biết một cạnh và hai góc.

=> Dùng định lí sin để tính cạnh còn lại.

b) Giải tam giác khi biết hai cạnh và góc xen giữa

=> Dùng định lí cosin để tính cạnh thứ ba. 

Sau đó dùng hệ quả của định lí cosin để tính góc.

c) Giải tam giác khi biết ba cạnh

Đối với bài toán này ta sử dụng hệ quả của định lí cosin để tính góc: 

    \(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)       

    \(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)

    \(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)

Chú ý: 

1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)

2. Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.

Với Bài tập về Quy tắc trọng tâm tam giác của vecto cực hay, chi tiết Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Quy tắc trọng tâm tam giác của vecto từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Trọng tâm tam giác là giao điểm của ba đường trung tuyến.

Áp dụng quy tắc trọng tâm tam giác:

Điểm G là trọng tâm tam giác ABC thì ta có:

với mọi điểm M bất kỳ.

Ví dụ 1: Cho G và G’ lần lượt là trọng tâm của hai tam giác ABC và A’B’C’. Chứng minh rằng

.

Hướng dẫn giải:

Do G là trọng tâm của tam giác ABC nên ta có:

Do G’ là trọng tâm tam giác A’B’C’ và có điểm G nên ta có:

Ví dụ 2: Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng?

Hướng dẫn giải:

Gọi M là trung điểm của BC nên ta có:

Vì G là trọng tâm của tam giác ABC

Nên

(tính chất trọng tâm trong tam giác)

Suy ra B đúng, A,C, D sai.

Đáp án B

Ví dụ 3: Cho tam giác ABC có trọng tâm G. Gọi M, N, P lần lượt là trung điểm của BC, CA và AB. Chọn khẳng định sai?

Hướng dẫn giải:

+ Vì G là trọng tâm tam giác ABC và P là trung điểm của AC nên ta có GC = 2 GP mà vecto

ngược hướng

Do đó:

D sai.

Giải thích A, B, C đúng:

+ Do G là trọng tâm tam giác ABC

Suy ra B đúng.

+ Do M, N, P lần lượt là trung điểm của BC, CA, AB và G là trọng tâm của tam giác ABC

Thay vào (1) ta được:

thay vào (2) ta được:

Đáp án D

Ví dụ 4: Cho tam giác ABC có G là trọng tâm. Xác định điểm M sao cho:

A. Điểm M là trung điểm cạnh AC

B. Điểm M là trung điểm cạnh GC

C. Điểm M chia đoạn AB theo tỉ số 4

D. Điểm M chia đoạn GC thỏa mãn

Hướng dẫn giải:

+ Do G là trọng tâm tam giác ABC và M là một điểm bất kỳ

Theo giả thiết ta lại có:

Do đó ta được:

Suy ra G, M, C thẳng hàng và M khác trung điểm của AB (2)

Vậy M chia đoạn GC thỏa mãn

D đúng.

+ Từ (1) suy ra M khác trung điểm của GC (vì nếu M là trung điểm của GC thì

mâu thuẫn (1))
B sai.

+ Từ (2) suy ra A và C sai vì A, M, C không thẳng hàng, do đó M không thể là trung điểm AC và A, M , B không thẳng hàng nên M không thể chia AB theo tỷ số 4.

Đáp án D

Ví dụ 5: Điều kiện nào sau đây không phải là điều kiện cần và đủ để G là trọng tâm của tam giác ABC, với M là trung điểm của BC.

Hướng dẫn giải:

+ Ta có:

A, M, G thẳng hàng và

ngược hướng với vecto
, do đó G nằm giữa M và A

Mặt khác M là trung điểm BC và MA = 3GM ()

Vậy G là trọng tâm tam giác ABC A đúng.

+ Ta có:

G là trọng tâm của tam giác ABC (theo lý thuyết)

D đúng.

+ C sai, do nếu G là trọng tâm tam giác ABC

Nên

không phải là điều kiện để G là trọng tâm tam giác ABC.

Đáp án C

Video liên quan

Chủ đề