Phép vị tự có bảo toàn khoảng cách không

1. Phép biến hình

- Điểm \(M'\) gọi là ảnh của điểm \(M\) qua phép biến hình \(F\) , hay \(M\) là điểm tạo ảnh của điểm \(M'\), kí hiệu \(M' = f\left( M \right)\)

- Nếu \(\left( H \right)\) là một hình nào đó thì \(\left( {H'} \right)\) gồm các điểm \(M'\) là ảnh của \(M \in {\rm H}\) được gọi là ảnh của \(\left( {\rm H} \right)\) qua phép biến hình \(F\) .

- Phép biến hình biến mỗi điểm M thành chính nó được gọi là phép đồng nhất.

2. Phép tịnh tiến

a. Định nghĩa

Phép vị tự có bảo toàn khoảng cách không

\({T_{\overrightarrow v }}(M) = M' \Leftrightarrow \overrightarrow {MM'}  = \overrightarrow v \)

b. Tính chất

- Nếu phép tịnh tiến biến hai điểm \(M,N\) thành hai điểm \(M',N'\) thì \(\overrightarrow {M'N'}  = \overrightarrow {MN} \) , từ đó suy ra \(M'N' = MN\)

- Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

- Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó, đường tròn thành đường tròn có cùng bán kính.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ $\left( {Oxy} \right)$ cho vectơ \(\overrightarrow v  = \left( {a;b} \right),M\left( {x;y} \right)\).

Khi đó phép tịnh tiến theo vectơ \(\overrightarrow v :{T_{\overrightarrow v }}(M) = M'\left( {x';y'} \right)\) có biểu thức tọa độ: \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

3. Phép đối xứng trục

a. Định nghĩa

Phép đối xứng qua một đường thẳng \(a\) là phép biến hình biến điểm \(M\) thành điểm \(M'\) đối xứng với \(M\) qua đường thẳng \(a\). Kí hiệu : ${D_a}$ (\(a\)là trục đối xứng)

Phép vị tự có bảo toàn khoảng cách không

b. Tính chất

+) \({D_a}\left( M \right) = M' \Leftrightarrow \overrightarrow {{M_0}M'}  =  - \overrightarrow {{M_0}M} \) với \({M_0}\) là hình chiếu của \(M\) trên \(a\).

+) \({D_a}\left( M \right) = M \Leftrightarrow M \in a\)

+) \({D_a}\left( M \right) = M' \Leftrightarrow {D_a}\left( {M'} \right) = M\), \(a\) là trung trực của đoạn \(MM'\).

- Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ.

- Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

- Phép đối xứng trục biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \(Oxy\): \({D_a}:M\left( {x;y} \right) \to M'\left( {x';y'} \right)\)

- Nếu \(a \equiv Ox \Rightarrow \left\{ \begin{array}{l}x = x'\\y =  - y'\end{array} \right.\)

- Nếu \(a \equiv Oy \Rightarrow \left\{ \begin{array}{l}x =  - x'\\y = y'\end{array} \right.\)

4. Phép đối xứng tâm

a. Định nghĩa

Cho điểm \(I\). Phép biến hình biến điểm \(I\) thành chính nó, biến mỗi điểm \(M\) khác \(I\) thành \(M'\) sao cho \(I\) là trung điểm \(MM'\) được gọi là phép đối xứng tâm \(I\). Kí hiệu: \({D_I}\) (\(I\) là tâm đối xứng)

Phép vị tự có bảo toàn khoảng cách không

\({D_I}\left( M \right) = M' \Leftrightarrow \overrightarrow {IM'}  =  - \overrightarrow {IM} \)

b. Tính chất

- Nếu \({D_I}\left( M \right) = M'\) và \({D_I}\left( N \right) = N'\) thì \(\overrightarrow {M'N'}  =  - \overrightarrow {MN} \) , từ đó suy ra \(M'N' = MN\)

- Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nóm biến đường tròn thành đường tròn có cùng bán kính.

- Phép đối xứng tâm biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

- Phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kì.

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \(Oxy\), cho \({I_0}\left( {{x_0};{y_0}} \right)\), gọi \(M\left( {x;y} \right)\) và \(M'\left( {x';y'} \right)\) với \({D_I}\left( M \right) = M' \Rightarrow \left\{ \begin{array}{l}x' = 2{x_0} - x\\y' = 2{y_0} - y\end{array} \right.\)

5. Phép quay

a. Định nghĩa

Phép vị tự có bảo toàn khoảng cách không

Trong mặt phẳng cho điểm $O$ cố định và góc lượng giác $\alpha $ không đổi. Phép biến hình biến mỗi điểm \(M\)

thành điểm $M'$ sao cho $OM = OM'$ và $\left( {OM,OM'} \right) = \alpha $ được gọi là phép quay tâm $O$ góc quay $\alpha $.

Kí hiệu: ${Q_{\left( {O,\alpha } \right)}}$($O$ là tâm phép quay, $\alpha $ là góc quay lượng giác).

${Q_{\left( {O,\alpha } \right)}}\left( M \right) = M' \Leftrightarrow \left\{ \begin{array}{l}OM = OM'\\\left( {OM,OM'} \right) = \alpha \end{array} \right.$

b. Tính chất

- Chiều dương của phép quay là chiều dương của đường tròn lượng giác (chiều kim đồng hồ).

- Với $k \in \mathbb{Z}$ ta luôn có: ${Q_{\left( {O,2k\pi } \right)}}$ là phép đồng nhất; ${Q_{\left( {O,\left( {2k + 1} \right)\pi } \right)}}$ là phép đối xứng tâm.

- Phép quay bảo toàn khoảng cách giữa hai điểm bất kì.

- Phép quay biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.

- Phép quay biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự.

c. Biểu thức tọa độ

$\left\{ \begin{array}{l}x' - {x_0} = \left( {x - {x_0}} \right)\cos \varphi  - \left( {y - {y_0}} \right)\sin \varphi \\y' - {y_0} = \left( {x - {x_0}} \right)\sin \varphi  + \left( {y - {y_0}} \right)\cos \varphi \end{array} \right.$

Đặc biệt:

+) $\varphi  = 90^\circ  \Rightarrow \left\{ \begin{array}{l}x' =  - y\\y' = x\end{array} \right.$

+) Nếu $\varphi  =  - 90^\circ  \Rightarrow \left\{ \begin{array}{l}x' = y\\y' =  - x\end{array} \right.$

+) Nếu $\varphi  = 180^\circ  \Rightarrow \left\{ \begin{array}{l}x' =  - x\\y' =  - y\end{array} \right.$

6. Phép vị tự

a. Định nghĩa

Phép vị tự có bảo toàn khoảng cách không

Cho điểm $O$ cố định và số $k \ne 0$ không đổi. Phép biến hình biến mỗi điểm $M$ thành điểm \(M'\) sao cho \(\overrightarrow {OM'}  = k\overrightarrow {OM} \) được gọi là phép vị tự tâm $O,$ tỉ số $k.$

Kí hiệu: \({V_{\left( {O,k} \right)}}\) ($O$ là tâm vị tự, $k$ là tỉ số vị tự)

\({V_{\left( {o,k} \right)}}\left( M \right) = M' \Leftrightarrow \overrightarrow {OM'}  = k\overrightarrow {OM} \)

b. Tính chất

- Nếu phép vị tự tỉ số k biến hai điểm $M, N$ tùy ý theo thứ tự thành \(M',\,N'\) thì

\(\overrightarrow {M'N'}  = k\overrightarrow {MN} \) và \(M'N' = \left| k \right|MN\).

- Phép vị tự tỉ số $k:$

+ Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa chúng.

+ Biến đường thẳng thành đường thẳng song song hoặc trùng với nó, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.

+ Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc bằng nó.

+ Biến đường tròn bán kính ${\rm{R}}$ thành đường tròn có bán kính $\left| k \right|.R$

c. Biểu thức tọa độ

Trong mặt phẳng tọa độ \(Oxy\) cho phép vị tự ${V_{\left( {I,k} \right)}}$ tâm $I\left( {{x_0};{y_0}} \right)$ biến điểm \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\).

Khi đó \(\left\{ \begin{array}{l}x' = kx + \left( {1 - k} \right){x_0}\\y' = ky + \left( {1 - k} \right){y_0}\end{array} \right.\)

7. Phép đồng dạng

a. Định nghĩa

Một phép biến hình \(F\) được gọi là phép đồng dạng tỉ số \(k\,\,\,\left( {k > 0} \right)\) nếu với hai điểm bất kỳ \(M,N\) và ảnh \(M',N'\) tương ứng của chúng ta luôn có \(M'N' = kMN.\)

Nhận xét:

- Phép dời hình là phép đồng dạng tỉ số \(k = 1\).

- Phép vị tự tỉ số \(k\) là phép đồng dạng tỉ số \(\left| k \right|\).

- Nếu thực hiện liên tiếp hai phép đồng dạng thì ta được một phép đồng dạng.

b. Tính chất

- Phép đồng dạng tỉ số \(k\):

+ Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toán thứ tự giữa chúng.

+ Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.

+ Biến một tam giác thành tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng nó.

+ Biến một đường tròn bán kính \(R\) thành đường tròn bán kính \(\left| k \right|.R\).

8. Phép dời hình và hai hình bằng nhau

- Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ.

- Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia.

Cho điểm I và một số $k\neq 0$. Phép biến hình biến mỗi điểm M thành điểm M’ sao cho $\vec{IM’}=k.\vec{IM}$ được gọi là phép vị tự tâm I tỉ số k.

Tính chất phép vị tự

  1. Giả sử M’ và N’ theo thứ tự là ảnh của hai điểm M và N qua phép vị tự tỉ số k. Khi đó:a. $ \vec{M’N’}=k.\vec{MN} $

    b. $M’N’=|k|.MN $

  2. Phép vị tự tỉ số ka. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy.b. Biến một đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đã cho, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.c. Biến một tam giác thành một tam giác đồng dạng với tam giác đã cho, biến góc thành góc bằng nó.

    d. Biến một đường tròn có bán kính R thành đường tròn có bán kính $|k|R$.

Trên đây là lí thuyết về phép vị tự gồm định nghĩa và tính chất. Tuy nhiên thầy sẽ giải thích rõ hơn một số tính chất để các bạn có thể hiểu thêm.

Xem thêm bài giảng:

Tính chất 1:

a. $ \vec{M’N’}=k.\vec{MN} $
b. $M’N’=|k|.MN $

Phép vị tự có bảo toàn khoảng cách không

a. Với k là một số dương (k=3) thì hai vectơ MN và vectơ M’N’ sẽ cùng hướng, còn k là 1 số âm (k=-3) thì hai vectơ này sẽ ngược hướng.

b. Trong đẳng thức này $M’N’=|k|.MN $ thì k nằm trong dấu giá trị tuyệt đối vì ở đây muốn nói tới quan hệ về độ dài của hai đoạn thẳng. Do đó mà hệ số k không được âm.

Nếu k=3 thì M’N’=3MN. Nếu k=-3 thì M’N’ =3MN

Tính chất 2:

a. Nếu 3 điểm A, B, C thẳng hàng và theo thứ tự đó thì ba điểm ảnh sẽ là A’, B’, C’ và cũng theo thứ tự đó. Với A’ là ảnh của A, B’ là ảnh của B, C’ là ảnh của C.

Phép vị tự có bảo toàn khoảng cách không

c. Phép vị tự biến một tam giác thành tam giác đồng dạng với nó. Tam giác A’B’C’ là ảnh của tam giác ABC qua phép vị tự tâm I. Do đó tam giác ABC đồng dạng với tam giác A’B’C’.

Phép vị tự có bảo toàn khoảng cách không

d. Phép vị tự tâm $I$ biến đường tròn tâm O thành đường tròn tâm O’ với tỉ số $k=\dfrac{R’}{R}$

Phép vị tự tâm $I’$ biến đường tròn tâm O thành đường tròn tâm O’ với tỉ số $k=-\dfrac{R’}{R}$

Phép vị tự có bảo toàn khoảng cách không

Bài viết này đã giúp các bạn hiểu rõ hơn về định nghĩa và tính chất của phép vị tự. Các bạn có thể tham khảo thêm một số bài giảng về việc tìm ảnh của điểm hay đường tròn qua phép vị tự thầy để link ở phía trên nhé.

SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ