What binds to a site in the DNA far from the promoter to stimulate transcription?

Abstract

Two principal models have been invoked to explain transcriptional stimulation of RNA polymerase II genes by enhancers/upstream promoter elements: in one, upstream regulatory sequences directly interact with proximal promoter elements via proteins bound to the DNA (“looping” model); in the other, RNA polymerase II (or a transcription factor) binds to distal sequences and then scans along the DNA until it reaches the promoter (“scanning” or “entry site” model). So far, it has been reported that enhancers or upstream promoter elements transmit their effect on a gene only via covalently closed DNA, i.e., in a cis configuration. The looping model predicts, however, that the effect can be transmitted also in certain trans configurations. Here we demonstrate that an enhancer from SV40 or cytomegalovirus can stimulate transcription in vitro even when noncovalently attached to the β-globin promoter via the proteins streptavidin or avidin. These findings are consistent with the looping model rather than the scanning model. In addition, stimulation of transcription in trans, as shown by our experiments, may be found in nature in phenomena such as transvection, where one chromosome affects gene expression in the paired homolog.

To read this article in full you will need to make a payment

References

    • Allison L.A.
    • Ingles C.J.

    Mutations in RNA polymerase II enhance or suppress mutations in GAL4.

    in: Proc. Natl. Acad. Sci. USA. 86. 1989: 2794-2798

    • Google Scholar

    • Argarana C.E.
    • Kuntz I.D.
    • Birken S.
    • Axel R.
    • Cantor C.R.

    Molecular cloning and sequence of the strepatavidin gene.

    Nucl. Acids Res. 1986; 14: 1871-1882

    • Scopus (161)
    • PubMed
    • Crossref
    • Google Scholar

    • Banerji J.
    • Rusconi S.
    • Schaffner W.

    Expression of a β-globin gene is enhanced by remote SV40 DNA sequences.

    Cell. 1981; 27: 299-308

    • Scopus (901)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Brandle C.J.
    • Struhl K.

    Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro.

    in: Proc. Natl. Acad. Sci. USA. 86. 1989: 2652-2656

    • Google Scholar

    • Brent R.
    • Ptashne M.

    A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene.

    Nature. 1984; 312: 612-615

    • Scopus (133)
    • PubMed
    • Crossref
    • Google Scholar

    • Chaiet L.
    • Wolf F.J.

    The properties of streptavidin, a biotin-binding protein produced by streptomycetes.

    Arch. Biochem. Biophys. 1964; 106: 1-5

    • Scopus (374)
    • PubMed
    • Crossref
    • Google Scholar

    • Chodosh L.A.
    • Carthew R.W.
    • Morgan J.G.
    • Crabtree G.R.
    • Sharp P.A.

    The adenovirus major late transcription factor activates the rat gamma-fibrinogen promoter.

    Science. 1987; 238: 684-688

    • Scopus (97)
    • PubMed
    • Crossref
    • Google Scholar

    • Cohen R.S.
    • Meselson M.

    Periodic interactions of heat shock transcriptional elements.

    Nature. 1988; 332: 856-858

    • Scopus (52)
    • PubMed
    • Crossref
    • Google Scholar

    • Courey A.J.
    • Plon S.E.
    • Wang J.C.

    The use of psoralenmodified DNA to probe the mechanism of enhancer action.

    Cell. 1986; 45: 567-574

    • Scopus (39)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Dierks P.
    • van Ooyen A.
    • Cochran M.D.
    • Dobkin C.
    • Reiser J.
    • Weissmann C.

    Three regions upstream from the cap site are required for efficient and accurate tránscription of the rabbit β-globin gene in mouse 3T6 cells.

    Cell. 1983; 32: 695-706

    • Scopus (292)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Dignam J.D.
    • Lebovitz R.M.
    • Roeder R.G.

    Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei.

    Nucl. Acids Res. 1983; 5: 1475-1489

    • Scopus (9142)
    • Crossref
    • Google Scholar

    • Dunn T.M.
    • Hahn S.
    • Ogden S.
    • Schleif R.F.

    An operator at −280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression.

    in: Proc. Natl. Acad. Sci. USA. 81. 1984: 5017-5020

    • Google Scholar

    • Gasser S.M.
    • Laemmli U.K.

    A glimpse at chromosomal order.

    Trends Genet. 1987; 3: 16-22

    • Scopus (352)
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Gellert M.
    • Nash H.

    Communication between segments of DNA during site-specific recombination.

    Nature. 1987; 325: 401-404

    • Scopus (81)
    • PubMed
    • Crossref
    • Google Scholar

    • Gralla J.D.

    Bacterial gene regulation from distant DNA sites.

    Cell. 1989; 57: 193-195

    • Scopus (49)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Green N.M.

    Avidin.

    in: Anfinsen C.B. Edsall J.T. Richards F.M. Advances in Protein Chemistry. Academic Press, New York1975: 85-133

    • Google Scholar

    • Griffith J.
    • Hochschild A.
    • Ptashne M.

    DNA loops induced by cooperative binding of lambda repressor.

    Nature. 1986; 322: 750-752

    • Scopus (110)
    • PubMed
    • Crossref
    • Google Scholar

    • Hagerman P.J.

    Flexibility of DNA.

    Annu. Rev. Biophys. Chem. 1988; 17: 265-287

    • Scopus (925)
    • PubMed
    • Crossref
    • Google Scholar

    • Hai T.
    • Horikoshi M.
    • Roeder R.G.
    • Green M.R.

    Analysis of the role of the transcription factor ATF in the assembly of a functional preinitiation complex.

    Cell. 1988; 54: 1043-1051

    • Scopus (102)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Hochschild A.
    • Ptashne M.

    Cooperative binding of λ repressors to sites separated by integral turns of the DNA helix.

    Cell. 1986; 44: 681-687

    • Scopus (302)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Hope I.A.
    • Struhl K.

    Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast.

    Cell. 1986; 46: 885-894

    • Scopus (547)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Horikoshi M.
    • Hai T.
    • Lin Y.-S.
    • Green M.R.
    • Roeder R.G.

    Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex.

    Cell. 1988; 54: 1033-1042

    • Scopus (268)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Judd B.H.

    Transvection: allelic cross talk.

    Cell. 1988; 53: 841-843

    • Scopus (37)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Krämer H.
    • Niemöller M.
    • Amouyal M.
    • Revet B.
    • von Wilcken-Bergmann B.
    • Müller-Hill B.

    Lac repressor forms loops with linear DNA carrying two suitably spaced lac operators.

    EMBO J. 1987; 6: 1481-1491

    • Scopus (261)
    • PubMed
    • Crossref
    • Google Scholar

    • Ma J.
    • Ptashne M.

    Deletion analysis of GAL4 defines two transcriptional activating segments.

    Cell. 1987; 48: 847-853

    • Scopus (602)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Maniatis T.
    • Fritsch E.F.
    • Sambrook J.
    Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York1982

    • Google Scholar

    • Maniatis T.
    • Goodbourn S.
    • Fischer J.F.

    Regulation of inducible and tissue-specific gene expression.

    Science. 1987; 236: 1237-1245

    • Scopus (908)
    • PubMed
    • Crossref
    • Google Scholar

    • Moreau P.
    • Hen R.
    • Wasylyk B.
    • Everett R.
    • Gaub M.P.
    • Chambon P.

    The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants.

    Nucl. Acids Res. 1981; 9: 6047-6068

    • Scopus (380)
    • PubMed
    • Crossref
    • Google Scholar

    • Mukherjee S.
    • Erickson H.
    • Bastia D.

    Detection of DNA looping due to simultaneous interaction of a DNA-binding protein with two spatially separated binding sites on DNA.

    in: Proc. Natl. Acad. Sci. USA. 85. 1988: 6287-6291

    • Google Scholar

    • Müller M.M.
    • Gerster T.
    • Schaffner W.

    Enhancer sequences and the regulation of gene transcription.

    Eur. J. Biochem. 1988; 176: 485-495

    • Scopus (99)
    • PubMed
    • Crossref
    • Google Scholar

    • Ondek B.
    • Shepard A.
    • Herr W.

    Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities.

    EMBO J. 1987; 6: 1017-1025

    • Scopus (95)
    • PubMed
    • Crossref
    • Google Scholar

    • Picard D.

    Viral and cellular transcription enhancers.

    Oxf. Surv. Euk. Genes. 1985; 2: 24-48

    • PubMed
    • Google Scholar

    • Pierce J.
    • Lenardo M.
    • Baltimore D.

    Oligonucleotide that binds nuclear factor NF-κB acts as a lymphoid-specific and inducible enhancer element.

    in: Proc. Natl. Acad. Sci. USA. 85. 1988: 1482-1486

    • Google Scholar

    • Plon S.E.
    • Wang J.C.

    Transcription of the human β-globin gene is stimulated by an SV40 enhancer to which it is physically linked but topologically uncoupled.

    Cell. 1986; 45: 575-580

    • Scopus (26)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Ptashne M.

    Gene regulation by proteins acting nearby and at a distance.

    Nature. 1986; 322: 697-701

    • Scopus (525)
    • PubMed
    • Crossref
    • Google Scholar

    • Ptashne M.

    How eukaryotic transcriptional activators work.

    Nature. 1988; 335: 683-689

    • Scopus (1167)
    • PubMed
    • Crossref
    • Google Scholar

    • Ruden D.M.
    • Ma J.
    • Ptashne M.

    No strict alignment is required between a transcriptional activator binding site and the “TATA box” of a yeast gene.

    in: Proc. Natl. Acad. Sci. USA. 85. 1988: 4262-4266

    • Google Scholar

    • Sassone-Corsi P.
    • Dougherty J.P.
    • Wasylyk B.
    • Chambon P.

    Stimulation of in vitro transcription from heterologous promoters by the simian virus 40 enhancer.

    in: Proc. Natl. Acad. Sci. USA. 81. 1984: 308-312

    • Google Scholar

    • Schirm S.
    • Jiricny J.
    • Schaffner W.

    The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity.

    Genes Dev. 1987; 1: 65-74

    • Scopus (111)
    • PubMed
    • Crossref
    • Google Scholar

    • Schleif R.

    Why should DNA loop?.

    Nature. 1987; 327: 369-370

    • Scopus (40)
    • PubMed
    • Crossref
    • Google Scholar

    • Schleif R.

    DNA looping.

    Science. 1988; 240: 127-128

    • Scopus (58)
    • PubMed
    • Crossref
    • Google Scholar

    • Schöler H.R.
    • Gruss P.

    Cell type-specific enhancement in vitro requires the presence of trans-acting factors.

    EMBO J. 1985; 4: 3005-3013

    • Scopus (43)
    • PubMed
    • Crossref
    • Google Scholar

    • Schüle R.
    • Muller M.
    • Otsuka-Murakami H.
    • Renkawitz R.

    Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor.

    Nature. 1988; 332: 87-90

    • Scopus (235)
    • PubMed
    • Crossref
    • Google Scholar

    • Schüle R.
    • Muller M.
    • Kaltschmidt C.
    • Renkawitz R.

    Many transcription factors interact synergistically with steroid receptors.

    Science. 1989; 242: 1418-1420

    • Scopus (386)
    • Crossref
    • Google Scholar

    • Serfling E.
    • Jasin M.
    • Schaffner W.

    Enhancers and eukaryotic gene transcription.

    Trends Genet. 1985; 1: 224-230

    • Scopus (292)
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Sergeant A.
    • Bohmann D.
    • Zentgraf H.
    • Weiher H.
    • Keller W.

    A transcription enhancer acts in vitro over distances of hundreds of base-pairs on both circular and linear templates but not on chromatin-reconstituted DNA.

    J. Mol. Biol. 1984; 180: 577-600

    • Scopus (30)
    • PubMed
    • Crossref
    • Google Scholar

    • Shi Y.-B.
    • Griffith J.
    • Gamper H.
    • Hearst J.E.

    Evidence for structural deformation of the DNA helix by a psoralen diadduct but not by a monoadduct.

    Nucl. Acids Res. 1988; 16: 8945-8952

    • Scopus (16)
    • PubMed
    • Crossref
    • Google Scholar

    • Sinden R.R.
    • Hagerman P.J.

    Interstrand psoralen cross-links do not introduce appreciable bends in DNA.

    Biochemistry. 1984; 23: 6299-6303

    • Scopus (48)
    • PubMed
    • Crossref
    • Google Scholar

    • Sogo J.M.
    • Ness P.J.
    • Widmer R.M.
    • Parish R.W.
    • Koller T.

    Psoralen-crosslinking of DNA as a probe for the structure of active nucleolar chromatin.

    J. Mol. Biol. 1984; 178: 897-928

    • Scopus (96)
    • PubMed
    • Crossref
    • Google Scholar

    • Sogo J.M.
    • Stasiak A.
    • De Bernadin W.
    • Losa R.
    • Koller T.

    Binding of protein to nucleic acids.

    in: Sommerville J. Scheer U. Electron Microscopy in Molecular Biology: A Practical Approach. IRL Press, Oxford1987: 61-79

    • Google Scholar

    • Takahashi K.
    • Vigneron M.
    • Matthes H.
    • Wildeman A.
    • Zenke M.
    • Chambon P.

    Requirement of stereospecific alignments for initiation from the simian virus 40 early promoter.

    Nature. 1986; 319: 121-126

    • Scopus (180)
    • PubMed
    • Crossref
    • Google Scholar

    • Theveny B.
    • Revet B.

    DNA orientation using specific avidin-ferritin biotin end labelling.

    Nucl. Acids Res. 1987; 15: 948-958

    • Scopus (22)
    • Crossref
    • Google Scholar

    • Theveny B.
    • Bailly A.
    • Rauch C.
    • Rauch M.
    • Delain E.
    • Milgrom E.

    Association of DNA-bound progesterone receptors.

    Nature. 1987; 329: 79-81

    • Scopus (66)
    • PubMed
    • Crossref
    • Google Scholar

    • Treisman R.
    • Maniatis T.

    SV40 enhancer increases the number of RNA polymerase II molecules on linked DNA.

    Nature. 1985; 315: 72-75

    • Scopus (78)
    • Crossref
    • Google Scholar

    • Veldman G.
    • Lupton S.
    • Kamen R.

    Polyomavirus enhancer contains multiple redundant sequence elements that activate both DNA replication and gene expression.

    Mol. Cell. Biol. 1985; 5: 649-658

    • Scopus (82)
    • PubMed
    • Crossref
    • Google Scholar

    • Wang J.C.
    • Giaever G.N.

    Action at a distance along a DNA.

    Science. 1988; 240: 300-304

    • Scopus (174)
    • PubMed
    • Crossref
    • Google Scholar

    • Weber F.
    • Schaffner W.

    SV40 enhancer increases RNA polymerase density within the linked gene.

    Nature. 1985; 315: 75-77

    • Scopus (51)
    • PubMed
    • Crossref
    • Google Scholar

    • Westin G.
    • Gerster T.
    • Müller M.M.
    • Schaffner G.
    • Schaffner W.

    OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts.

    Nucl. Acids Res. 1987; 17: 6787-6798

    • Scopus (194)
    • Crossref
    • Google Scholar

    • Wildeman A.G.
    • Sassone-Corsi P.
    • Grundström T.
    • Zenke M.
    • Chambon P.

    Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor.

    EMBO J. 1984; 3: 3129-3133

    • Scopus (89)
    • PubMed
    • Crossref
    • Google Scholar

    • Wirth T.
    • Staudt L.
    • Baltimore D.

    An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity.

    Nature. 1987; 329: 174-178

    • Scopus (230)
    • PubMed
    • Crossref
    • Google Scholar

    • Wu C.-T.
    • Goldberg M.L.

    The Drosophila zeste gene and transvection.

    Trends Genet. 1989; 5: 189-194

    • Scopus (56)
    • PubMed
    • Abstract
    • Full Text PDF
    • Google Scholar

    • Wu L.
    • Berk A.

    Constraints on spacing between transcription factor binding sites in a simple adenovirus promoter.

    Genes Dev. 1988; 2: 403-411

    • Scopus (45)
    • PubMed
    • Crossref
    • Google Scholar

    • Zhen W.-P.
    • Dahl O.
    • Buchardt O.
    • Nielsen P.E.

    On the bending by psoralen interstrand crosslinking.

    Photochem. Photobiol. 1988; 48: 643-646

    • Scopus (9)
    • PubMed
    • Crossref
    • Google Scholar

Article Info

Publication History

Received in revised form: June 16, 1989

Received: December 20, 1988

Identification

DOI: https://doi.org/10.1016/0092-8674(89)90110-4

Copyright

© 1989 Published by Elsevier Inc.

ScienceDirect

Access this article on ScienceDirect

What binds to the promoter transcription?

Promoter sequences are typically located directly upstream or at the 5' end of the transcription initiation site. RNA polymerase and the necessary transcription factors bind to the promoter sequence and initiate transcription.

What binds to DNA in transcription?

To begin transcribing a gene, RNA polymerase binds to the DNA of the gene at a region called the promoter. Basically, the promoter tells the polymerase where to "sit down" on the DNA and begin transcribing.

What will bind to DNA and stimulate transcription of an operon?

Transcription factors are proteins that help turn specific genes "on" or "off" by binding to nearby DNA. Transcription factors that are activators boost a gene's transcription.

What enzymes binds to the promoter?

Mediator (coactivator) (a complex usually consisting of about 26 proteins in an interacting structure) communicates regulatory signals from enhancer DNA-bound transcription factors directly to the RNA polymerase II (pol II) enzyme bound to the promoter.