Chỉnh hợp kí hiệu là gì

Với mọi số tự nhiên dương \(n\), tích \(1.2.3....n\) được gọi là \(n\) - giai thừa và kí hiệu \(n!\). Vậy \(n! = 1.2.3...n\).

Ta quy ước \(0! = 1\).

b) Tính chất

\(\begin{array}{l}*{\rm{ }}n! = n(n - 1)!\\*{\rm{ }}n! = n(n - 1)(n - 2)...(n - k - 1).k!\end{array}\).

2. Hoán vị

a) Định nghĩa

Cho tập \(A\) gồm \(n\) phần tử (\(n \ge 1\)). Khi sắp xếp \(n\) phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.

Kí hiệu số hoán vị của n phần tử là \({P_n}\).

b) Số hoán vị của tập n phần tử

Định lí: Ta có \({P_n} = n!\)

3. Chỉnh hợp

a) Định nghĩa

Cho tập A gồm n phần tử và số nguyên \(k\) với \(1 \le k \le n\). Khi lấy \(k\) phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập \(k\) của \(n\) phần tử của A.

b) Số chỉnh hợp

Kí hiệu \(A_n^k\) là số chỉnh hợp chập \(k\) của \(n\) phần tử

Định lí: Ta có \(A_n^k = \frac{{n!}}{{(n - k)!}}\).

4. Tổ hợp

a) Định nghĩa

Cho tập A có n phần tử và số nguyên k với \(1 \le k \le n\). Mỗi tập con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.

b) Số tổ hợp

Kí hiệu \(C_n^k\) là số tổ hợp chập k của n phần tử.

Định lí:

Ta có: \(C_n^k = \frac{{n!}}{{(n - k)!k!}}\).

c) Tính chất của các số \(C_n^k\)

Tính chất 1: \(C_n^k = C_n^{n - k}\) với \(0 \le k \le n.\)

Tính chất 2: (Công thức Pa-xcan)

\(C_{n - 1}^{k - 1} + C_{n - 1}^k = C_n^k\) với \(1 \le k < n.\)

5. Bài tập minh họa

Ví dụ 1:

Sắp xếp 5 người vào một băng ghế có 5 chỗ. Hỏi có bao nhiêu cách.

Hướng dẫn giải:

Mỗi cách đổi chỗ 1 trong 5 người trên băng ghế là 1 hoán vị.

Vậy có P5 = 5! = 120 (cách).

Ví dụ 2:

Từ tập hợp X= {0; 1; 2; 3; 4; 5} có thể lập được mấy số tự nhiên có 4 chữ số khác nhau.

Hướng dẫn giải:

Gọi A= \(\overline {{a_1}{a_2}{a_3}{a_4}}\) là số cần lập với \({a_1} \ne 0\) và a1, a2, a3, a4 phân biệt.

- Chữ số \({a_1} \ne 0\) nên có 5 cách chọn a1.

- Chọn 3 trong số 5 chữ số còn lại để sắp xếp vào 3 vị trí có \(A_5^3\) cách.

Vậy có \(5.A_5^3= 300\) số có thể lập từ tập hợp X.

Ví dụ 3:

Có 10 cuố sách toán khác nhau. Chọn ra 4 cuốn hỏi có bao nhiêu cách.

Hướng dẫn giải:

Mỗi cách chọn ra 4 trong số 10 cuốn sách là một tổ hợp chập 4 của 10.

Vậy có \(C_{10}^4\) = 210 (cách chọn).

Ví dụ 4:

Có bao nhiêu cách xếp \(5\) cuốn sách Toán, \(6\) cuốn sách Lý và \(8\) cuốn sách Hóa lên một kệ sách sao cho các cuốn sách cùng một môn học thì xếp cạnh nhau, biết các cuốn sách đôi một khác nhau.

Hướng dẫn giải:

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: \(3! = 6\) cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có \(5!\) cách hoán vị các cuốn sách Toán, \(6!\) cách hoán vị các cuốn sách Lý và \(8!\) cách hoán vị các cuốn sách Hóa

Kết quả của việc lấy k phần tử của A ($1 \le k \le n$) và xếp theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử.

Số các chỉnh hợp chập k của n phần tử được kí hiệu là $A_n^k$, ta có:

$A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}} = n\left( {n - 1} \right)...\left( {n - k + 1} \right)$

Toán Tổ hợp hay giải tích Tổ hợp, đại số tổ hợp và lý thuyết tổ hợp là một ngành toán học rời rạc nghiên cứu về cấu hình của một tập hữu hạn phần tử, bao gồm: Hoán vị, Chỉnh hợp, Tổ hợp,… của các phần tử trong một tập hợp. Khi nhắc tới 2 khái niệm tổ hợp và chỉnh hợp khiến học sinh gặp khó khăn. Phân biệt hai khái niệm trên khá mơ hồ, nhiều bạn chưa rõ nên áp dụng công thức tổ hợp hay chỉnh hợp để làm bài tập. Trong bài viết này, chúng ta sẽ đi tìm hiểu sự khác nhau giữa tổ hợp và chỉnh hợp để biết cách sử dụng chính xác nhé.

Chỉnh hợp kí hiệu là gì

Định nghĩa về Chỉnh hợp

Cho 1 tập hợp A gồm n phần tử (1≤ k ≤ n )

Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A, sắp xếp chúng theo 1 thứ tự nào đó được gọi là 1 chỉnh hợp chập k của n phần tử đã cho.

Kí hiệu chỉnh hợp: Akn là số các chỉnh hợp chập k của n phần tử (1≤ k ≤ n )

Akn = n! / (n−k)! = n.(n−1).(n−2).(n−3)… / (n−k ).(n – k – 1).(n – k – 2)….

Với k = n ⇒ Ann = Pn = n! Tức là 1 hoán vị của n phần tử cũng chính là 1 chỉnh hợp hợp chập n của n phần tử đó.

Quy ước chỉnh hợp: 0! = 1

Định nghĩa về Tổ hợp

Tập A có n phần tử ( n ≥ 0, k ≥ 0). Mỗi tập con gồm k phần tử của tập A được gọi là 1 tổ hợp chập k của n phần tử đã cho.

Kí hiệu như sau: Ckn: Là số các tổ hợp chập k của n phần tử (0 ≤ k ≤ n )

Ckn = n! / k!.(n−k)!

Số k ở trong định nghĩa cần thỏa mãn điều kiện (1 ≤ k ≤ n ). Tập hợp không có phần tử nào là tập rỗng vì vậy ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.

Quy ước: C0n = 1

Trên đây là những lý thuyết cơ bản về tổ hợp và chỉnh hợp. Trong quá trình học nhiều bạn học sinh thấy khái niệm tổ hợp và chỉnh hợp cứ giống giống nhau và không phân biệt được khi nào là chỉnh hợp và khi nào là tổ hợp. Nếu bạn cũng gặp phải vấn đề này hãy tham khảo ngay thông tin dưới đây.

Sự khác nhau giữa Chỉnh hợp và Tổ hợp

Về khái niệm của Chỉnh hợp:

Ta lấy ra k phần tử trong n phần tử của tập A. Từ k phần tử lấy ra ta sắp xếp chúng theo 1 thứ tự nào đó, mỗi cách sắp xếp như vậy ta được 1 chỉnh hợp.

Ví dụ: Ta lấy ra 3 số là 1; 2; 3, từ 3 số này ta lại sắp xếp thành các số có 3 chữ số. Kết quả là ta có là: 123; 231; 132; 213; 312; 321. Với việc thay đổi vị trí ta lại có được các số khác nhau và mỗi số đó là 1 chỉnh hợp.

Về khái niệm Tổ hợp:

Lấy ra tập hợp con gồm k phần từ trong n phần tử của tập A. Trong khái niệm tập hợp thì ra không phân biệt vị trí và thứ tự của những phần tử trong đó, ta chỉ quan tâm xem trong tập đó có bao nhiêu phần tử thôi. Mỗi khi lấy ra 1 tập hợp con gồm k phần tử sẽ cho ta 1 tổ hợp.

Cũng ví dụ trên:

Ta lấy ra 3 phần tử là các số 1; 2; 3, ta đặt các số này vào những vị trí khác nhau trong tập con, chúng ta sẽ có các tập con sau:

A = {1;2;3}; B = {1;3;2}; C = {2;1;3}; D = {2;3;1}; E = {3;1;2}; F = {3;2;1}

Đặt các số vào những vị trí khác nhau ta được các tập con khác nhau. Như ví dụ trên chúng ta có 6 tập con gồm A; B; C; D; E; F nhưng vẫn là các phần tử là 1; 2 và 3. Vì thế 6 tập con trên bằng nhau, tức là chúng chỉ là một và đó là tổ hợp. Trong tập hợp thì không phân biệt vị trí của những phần tử mà chỉ quan tâm trong tập đó gồm những phần tử nào, còn chỉnh hợp phân biệt cả vị trí và thứ tự. Vì vậy, các bạn sẽ thấy số chỉnh hợp bao giờ cũng nhiều hơn số tổ hợp.